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Motivating Example
Laplace’s Rule of Succession

Let n, k ∈ N, 0 ≤ k ≤ n, be given/fixed.

1. pick r from Uniform(0, 1)

2. pick c from Binomial(n, r)

3. on condition / restrict to c = k

Expected value of r = (k + 1)/(n + 2)

How do I work that out? Technical challenges:

▶ Hybrid continuous-discrete.
▶ Randomly choose a binomial distribution.

(Finishing what 3Blue1Brown started: probabilities of probabilities part 1, part 2.)
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Programming Probabilities
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Random Number Generators
RNG X is set/type of programs that output a random X element
(probability depends on program)

Uniform : R × R→ RNGR
Uniform(a, b) picks real number from [a, b] evenly.

Binomial : N × [0, 1]→ RNGN
Binomial(n, r) tosses coin n times, head probability r, count heads.

UnitX : X → RNG X
UnitX(x) Always outputs x. “Rare desert of determinism in vast
oasis of randomization.” I omit subscript X if inferrable.
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Chaining
Chaining operator “bind”, “then”, “flat-map”
≫= : RNG X × (X → RNG Y)→ RNG Y

g≫= k passes output of g to parametrized RNG k

Example:

1. pick r from Uniform(0, 1)

2. pick c from Binomial(n, r)

3. output (r, c)

Uniform(0, 1)≫= (λr·Binomial(n, r)≫= (λc·Unit(r, c))
or
Uniform(0, 1)≫= λr·Binomial(n, r)≫= λc·Unit(r, c)
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Restriction/Conditional
Restriction operator
| : RNG X × (X → B)→ RNG X
(B = {false, true})

g | pred = restrict g to when pred is true.

(Rejection sampling: Keep retrying g until output satisfies pred.)

Example:

1. pick x from Uniform(0, 1)

2. on condition x > 0.3

3. (output x)

Uniform(0, 1) | (λx· x > 0.3)
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Express as Program
Define

g = Uniform(0, 1)≫= λr·Binomial(n, r)≫= λc·Unit(r, c)

g′ = g | (λ(r, c)· c = k)

µ = g′≫= λ(r, c)·Unit(r)

Then µ generates an r as prescribed.

Re-run many times to approximate distribution and expected value.

(Actual Haskell code modulo syntax.)
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Re-read Program as Probability Measure
There is also a measure-theory reading of

g = Uniform(0, 1)≫= λr·Binomial(n, r)≫= λc·Unit(r, c)

g′ = g | (λ(r, c)· c = k)

µ = g′≫= λ(r, c)·Unit(r)

Then µ is the probability distribution/measure of the r in question.

Can find expected value and pdf.

“Codifying probability with the last full measure.”
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Probability Measures
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Measure Theory: Motivation 1/2
Integration by Lateral Thinking. Literally.

Riemann integral: Pixelate the x-axis.∑
i f (xi) × length[xi, xi + ϵ)

Lebesgue integral: Pixelate the y-axis.∑
i yi × length

(
f −1[yi, yi + ϵ)

)
Need “length” for fairly general subsets. Require:

length(
⋃

i Ai) =
∑

i length(Ai) (countable disjoint union)

Turns out problematic for all subsets. Settle for large enough family
closed under complement, countable union.
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Measure Theory: Motivation 2/2
Probability Theory

Sample space Ω.

Pr : subsets of Ω→ [0, 1]

Require:

Pr(
⋃

i Ai) =
∑

i Pr(Ai) (countable disjoint union)

Hmm déjà vu. . .

Moreover, expected value of f : Ω→ R = use Pr for “length” in
Lebesgue integration!∑

i yi × Pr
(
f −1[yi, yi + ϵ)

)
Riemann may not work: Ω may not even have “intervals”.
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Measurable Space; σ-Algebra
Data of a measurable space:

▶ Set of points X.
▶ σ-algebraM orMX, ⊆ ℘(X), closed under:

▶ owning X, owning ∅
▶ complement, countable union
▶ (corollary: also subtraction, countable intersection)

Members “measurable subsets”.

Examples:

▶ X countable set,M = ℘(X)
▶ X = R,M Borel algebra: smallest σ-algebra owning open

sets.
▶ X = R,M Lebesgue-measurable subsets (appendix). Larger

than Borel algebra. Default.
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Measures; Probability Measures
[Positive] Measure µ over measurable space (X,M):

▶ µ : M→ [0,∞]
▶ µ(

⋃
i Ai) =

∑
i µ(Ai) for countable disjoint union

“countably additive”
▶ (corollary: µ(∅) = 0)
▶ (corollary: if A ⊆ B then µ(A) ≤ µ(B))

Probability measure a.k.a. distribution: Furthermore:

▶ µ(X) = 1
▶ (corollary: µ : M→ [0, 1])

Define ΠX = set of probability measures over (X,MX).
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Discrete Measures
Counting measure: X countable set,M = ℘(X)
# : ℘(X)→ N ∪ {∞} ⊆ [0,∞]

#(A) =

|A| A finite

∞ A infinite

Binomial distribution: X = N (for simplicity),M = ℘(X)
Binomial : N × [0, 1]→ ΠN

Binomial(n, r)(A) =
∑
i∈A

0≤i≤n

(
n
i

)
ri(1 − r)n−i
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Continuous Measures
Lebesgue measure: X = R,M Lebegue-measurable subsets.
m : M→ [0,∞]
m([a, b]) = b − a, same for (a, b] etc. Full defn in appendix.
Default.

Uniform distribution: Lebesgue measure with rescaling:
Uniform : R × R→ ΠR

Uniform(a, b)(A) =
1

b − a
m(A ∩ [a, b])

Other continuous distributions mentioned later after integration.
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The Unit Measure
UnitX : X → ΠX

UnitX(x)(A) = χA(x) =

0 x < A
1 x ∈ A

(χA characteristic function of set A)

Deterministic corner case.

X can be discrete or continuous or any measurable space.

In the continuous case, no probability density function.
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Measurable Functions
We will only integrate functions that satisfy:

f : X → [−∞,∞] measurable function iff any of:

▶ for all open B, f −1(B) ∈ MX

▶ for all y ∈ R, {x | f (x) > y} ∈ MX

▶ or ≥, or <, or ≤

Motivation: Need µ
(
f −1[y, y + ϵ)

)
, makes sense forMX only.

Easy: f : N→ [−∞,∞] is measurable usingM = ℘(N).

Theorem: Piecewise continuous f : R→ R is measurable using
Lebesgue-measurable subsets.
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Lebesgue Integration: Idea
Notation:

∫
f dµ integrates f over all of X using measure µ.

Assume f ≥ 0 for now. Approximate from below by simple
functions (finite range).

Example: X = [−4, 4], f (x) = x2, an approximation is

s(x) = 4 · χ(−3,−2]∪[2,3)(x) + 9 · χ[−4,−3]∪[3,4](x)

“Clearly”∫
s dµ = 4 · µ((−3,−2] ∪ [2, 3)) + 9 · µ([−4,−3] ∪ [3, 4])

Take supremum over all approximations.

For general f , split into positive and negative parts, both treatable
as above.
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Lebesgue Integration
Simple functions (finite range):∫ n∑

i=1

ai χEi dµ =
n∑

i=1

ai µ(Ei) (ai ∈ R, Ei ∈ M)

Extend to non-negative f : X → [0,∞]∫
f dµ = sup{

∫
s dµ | s simple, 0 ≤ s ≤ f }

Extend to full range f : X → [−∞,∞]∫
f dµ =

(∫
max(0, f ) dµ

)
−

(∫
−min(f , 0) dµ

)
assuming not ∞−∞.
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Lebesgue Integration
Notation:

∫
A f dµ is over arbitrary A ∈ M, instead of all X.

Two equivalent treatments:

▶ Revise the definitions, change µ(Ei) to µ(Ei ∩ A).
▶ Just use

∫
f χA dµ
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Discrete Integration
X countable set,M = ℘(X), counting measure:∫

f d# =
∑
i∈X

f (i)

(assume f ≥ 0 or else absolute convergence or other conditions)

Binomial expressible as integral d#:

Binomial(n, r)(A) =
∫

A
λi·

(
n
i

)
ri(1 − r)n−i d#

Hence λi·
(
n
i

)
ri(1 − r)n−i is probability mass function.∫

f d(Binomial(n, r)) =
∫
λi· f (i)

(
n
i

)
ri(1 − r)n−i d#
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Continuous Integration (Sorry!)∫
f dm default for X = R or subspace. Riemann toolbox reusable

because:

Theorem: For Riemann-integrable f : [a, b]→ R,∫
[a,b]

f dm = Riemann
∫ b

a
f (x) dx

Uniform distribution: Reuse m with rescaling:∫
f d(Uniform(a, b)) =

1
b − a

∫
[a,b]

f dm

Most continuous distributions have probability density functions:

µ(A) =
∫

A
pdf dm∫

f dµ =
∫

f pdf dm
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Unit Integration
Sifting property: ∫

f d(Unit(x)) = f (x)

Integral well defined (and beautiful), even in continuous case, even
if no pdf. The power of measure theory!
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Chaining Probability Measures
Chaining operator “bind”, “then”, “flat-map”
≫= : ΠX × (X → ΠY)→ ΠY

Intuition for (µ≫= k)(B): For each x ∈ X, k(x) ∈ ΠY, k(x)(B) is
probability of B. Average over X according to µ. (Total probability).

Likewise for expected values.

(µ≫= k)(B) =
∫
λx· k(x)(B) dµ∫

f d(µ≫= k) =
∫ (
λx·

∫
f d(k(x))

)
dµ

(Require k : X → ΠY measurable function. Boils down to (λx· k(x)(B)) : X → [0, 1]

measurable function for all B ∈ MY .)
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Interlude
Happy Belated Halloween!

(Π,Unit,≫=) is a programmer-friendly version of. . .

The Giry monad! Due to Michèle Giry. More in appendix.
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Restricting Probability Measures
Restriction operator
| : ΠX × (X → B)→ ΠX

Conditional probability.

(µ | pred)(A) = µ(A ∩ B)/µ(B)∫
f d(µ | pred) =

1
µ(B)

∫
f χB dµ

where B = {x | pred(x)}, assuming ∈ M.

(One may say: pred is a measurable predicate.)

28 / 39



Re-read Program as Probability Measure
Define

g = Uniform(0, 1)≫= λr·Binomial(n, r)≫= λc·Unit(r, c)

g′ = g | (λ(r, c)· c = k)

µ = g′≫= λ(r, c)·Unit(r)

Then µ is the probability measure of the r in question.

expected =
∫
λr· r dµ

= (n + 1)
∫ 1

0
r
(
n
k

)
rk(1 − r)n−k dr appendix

=
k + 1
n + 2

pdf(r) = (n + 1)
(
n
k

)
rk(1 − r)n−k
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Conclusion
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Conclusion
Formal constructs for expressing probabilistic models.

Program interpretation gives executable samplers.

Meaure-theory interpretation gives resulting distributions.

Works the same way for discrete, continuous, hybrid, nested.
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Lebesgue Measure And Measurable Subsets
The following is well-defined for all A ∈ ℘(R); denoted m∗(A):

▶ let {In} be sequence of disjoint open intervals,
⋃

n In ⊇ A
▶

∑
n length(In) uncontroversial

▶ take infinum over all possibilities

Only issue: Not countably additive for some subsets.

Carathéodory’s solution: Restrict to

M = {A | ∀B·m∗(B) = m∗(B ∩ A) + m∗(B − A)}

Adopted for Lebesgue-measurable subsets.

Then define Lebesgue measure m = m∗|M
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The Giry Monad 1/2
Prologue: Generalize “measurable functions” from X → [−∞,∞] to
X → Y, with Y any measurable space:
h : X → Y measurable iff ∀B ∈ MY · h−1(B) ∈ MX

Π as endofunctor (on category of measurable spaces):

Object map: ΠX = set of probability measures over (X,MX).
σ-algebra: Smallest s.t. for all A ∈ MX, (λµ· µ(A)) : ΠX → [0, 1]
measurable function.

Morphism map: For measurable h : X → Y, Π h : ΠX → ΠY

(Π h)(µ)(B) = µ(h−1(B))∫
f d((Π h)(µ)) =

∫
f ◦ h dµ
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The Giry Monad 2/2
Π as monad:

UnitX : X → ΠX as defined earlier.

Multiplication FlatX : Π(ΠX)→ ΠX

Flat(µ)(A) =
∫
λν· ν(A) dµ∫

f d(Flat(µ)) =
∫ (
λν·

∫
f dν

)
dµ

Flattens “probability of probabilities” to total probability.

Then define µ≫= k = Flat((Π k)(µ)).
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Detailed Calculation 1/2
Let B = {(r, c) | c = k} = [0, 1] × {k}.∫

f dg =
∫ (
λr·

∫ (
λc·

∫
f d(Unit(r, c))

)
d(Binomial(n, r))

)
d(Uniform(0, 1))

=

∫ 1

0

n∑
c=0

f (r, c)
(
n
c

)
rc(1 − r)n−c dr

g(B) =
∫
χB dg

=

∫ 1

0

(
n
k

)
rk(1 − r)n−k dr

=

(
n
k

)
k!(n − k)!
(n + 1)!

(Beta functions)

=
1

n + 1
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Detailed Calculation 2/2

∫
λr· r dµ =

∫ (
λ(r, c)·

∫
λr· r d(Unit(r))

)
dg′

=

∫
(λ(r, c)· r) dg′

=
1

g(B)

∫
(λ(r, c)· r χB(r, c)) dg

=
1

g(B)

∫ 1

0
r
(
n
k

)
rk(1 − r)n−k dr

= (n + 1)
(
n
k

)
(k + 1)!(n − k)!

(n + 2)!
(Beta functions)

=
k + 1
n + 2

39 / 39


	Introduction
	Programming Probabilities
	Probability Measures
	Conclusion
	Bibliography
	Appendix

